Part Number Hot Search : 
101MF BC848 CD3027B 16245 16100 40N120 HPA14 45000
Product Description
Full Text Search
 

To Download AOD608 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 AOD608 Complementary Enhancement Mode Field Effect Transistor
General Description
The AOD608 uses advanced trench technology MOSFETs to provide excellent RDS(ON) and low gate charge. The complementary MOSFETs may be used in H-bridge, Inverters and other applications. Standard product AOD608 is
Pb-free (meets ROHS & Sony 259 specifications).
Features
n-channel p-channel VDS (V) = 40V -40V -10A (V GS = -10V) ID = 10A (V GS=10V) RDS(ON) RDS(ON) < 39 m (VGS=10V) < 51 m (VGS = -10V) < 50 m (VGS=4.5V) < 75 m (VGS = -4.5V) ESD rating: 3000V (HBM)
TO-252-4L D-PAK
D1/D2
D1
D2
Top View Drain Connected to Tab
G1
G2
S1
S2
n-channel
S1 G1 S2 G2
p-channel
Absolute Maximum Ratings T A=25C unless otherwise noted Parameter Max n-channel Symbol VDS Drain-Source Voltage 40 VGS Gate-Source Voltage 20 Continuous Drain G Current Pulsed Drain Current C Avalanche Current C Repetitive avalanche energy L=0.3mH TC=25C Power Dissipation Power Dissipation
B C
Max p-channel -40 20 -10 -10 -30 -15 33 50 25 2.5 1.6 -55 to 175 Typ 19 50 4 19 50 2.5 Max 23 60 7.5 23 60 3
Units V V A A mJ W W C
TC=25C TC=100C ID IDM IAR EAR PD PDSM
10 10 30 12 21 20 10 2 1.3 -55 to 175 Symbol RJA RJC RJA RJC Device n-ch n-ch n-ch p-ch p-ch p-ch
TC=100C TA=25C TA=70C
A
TJ, TSTG Junction and Storage Temperature Range Thermal Characteristics: n-channel and p-channel Parameter t 10s Maximum Junction-to-Ambient A A Steady-State Maximum Junction-to-Ambient B Steady-State Maximum Junction-to-Case A t 10s Maximum Junction-to-Ambient A Steady-State Maximum Junction-to-Ambient B Steady-State Maximum Junction-to-Case
C/W C/W C/W C/W C/W C/W
Alpha & Omega Semiconductor, Ltd.
AOD608
N Channel Electrical Characteristics (T =25C unless otherwise noted) J Symbol Parameter Conditions ID=250A, VGS=0V VDS=32V, VGS=0V TJ=55C VDS=0V, VGS= 20V VDS=VGS ID=250A VGS=10V, VDS=5V VGS=10V, ID=10A RDS(ON) gFS VSD IS Static Drain-Source On-Resistance VGS=4.5V, ID=4A Forward Transconductance VDS=5V, ID=10A Diode Forward Voltage IS=1A,VGS=0V Maximum Body-Diode Continuous Current TJ=125C 1.5 30 32 45 42 13 0.75 1 3.5 500 VGS=0V, VDS=30V, f=1MHz VGS=0V, VDS=0V, f=1MHz 106 38 2.6 8.4 VGS=10V, VDS=20V, ID=10A 4.1 1.6 2.6 4.8 VGS=10V, VDS=20V, RL=2, RGEN=3 IF=10A, dI/dt=100A/s 2 17 2.1 17.5 11.1 50 39 2.2 Min 40 1 5 1 3 Typ Max Units V A mA V A m m S V A pF pF pF nC nC nC nC ns ns ns ns ns nC
STATIC PARAMETERS BVDSS Drain-Source Breakdown Voltage IDSS IGSS VGS(th) ID(ON) Zero Gate Voltage Drain Current Gate-Body leakage current Gate Threshold Voltage On state drain current
DYNAMIC PARAMETERS Ciss Input Capacitance Coss Crss Rg Output Capacitance Reverse Transfer Capacitance Gate resistance
SWITCHING PARAMETERS Qg(10V) Total Gate Charge Qg(4.5V) Total Gate Charge Qgs Qgd tD(on) tr tD(off) tf trr Qrr Gate Source Charge Gate Drain Charge Turn-On DelayTime Turn-On Rise Time Turn-Off DelayTime Turn-Off Fall Time Body Diode Reverse Recovery Time
Body Diode Reverse Recovery Charge IF=10A, dI/dt=100A/s
A: The value of R JA is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with T A =25C. The Power dissipation P DSM is based on R JA and the maximum allowed junction temperature of 150C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175C may be used if the PCB allows it. B. The power dissipation P D is based on T J(MAX)=175C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C: Repetitive rating, pulse width limited by junction temperature T J(MAX)=175C. D. The R JA is the sum of the thermal impedence from junction to case R JC and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300 s pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T J(MAX)=175C. G. The maximum current rating is limited by bond-wires. H. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T A=25C. The SOA curve provides a single pulse rating. Rev0: Aug 2006
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
Alpha & Omega Semiconductor, Ltd.
AOD608
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS: N-CHANNEL
30 25 20 ID (A) 15 10 5 0 0 1 2 3 4 5 VDS (Volts) Fig 1: On-Region Characteristics 50 Normalized On-Resistance VGS=4.5V 40 VGS=3.5V 5 25C 10V 5V 4.5V 15 4V ID(A) 10 125C 20 VDS=5V
0 2 2.5 3 3.5 4 4.5 VGS(Volts) Figure 2: Transfer Characteristics 1.8 1.6 1.4 1.2 1 0.8 0.6 -50 -25 0 25 50 75 100 125 150 175 Temperature (C) Figure 4: On-Resistance vs. Junction Temperature 1.0E+01 VGS=10V ID=10A VGS=4.5V ID=4A
RDS(ON) (m)
30 VGS=10V 20 0 5 10 15 20 ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage
70 ID=10A 60 125C RDS(ON) (m) IS (A) 50 40 30 20 2 4 6 8 10 VGS (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage 25C
1.0E+00 1.0E-01 1.0E-02 1.0E-03 1.0E-04 1.0E-05 0.0 0.2 0.4 0.6 0.8 1.0 VSD (Volts) Figure 6: Body-Diode Characteristics 25C 125C
Alpha & Omega Semiconductor, Ltd.
AOD608
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS: N-CHANNEL
10 8 VGS (Volts) 6 4 2 0 0 2 4 6 8 10 Qg (nC) Figure 7: Gate-Charge Characteristics VDS=30V ID=10A Capacitance (pF) 800 700 600 500 400 300 200 100 0 0 15 20 25 30 35 VDS (Volts) Figure 8: Capacitance Characteristics 5 10 40 Crss Coss Ciss
100.0 10s 10.0 1m DC 10ms 1.0 TJ(Max)=175C TC=25C 0.1 0.01
210 190 170 150 Power (W) 130 110 90 70 50 30 10 0.0001 TJ(Max)=175C TC=25C
ID (Amps)
RDS(ON) limited
0.1
1 VDS (Volts)
10
100
0.001
0.01
0.1
1
10
Figure 9: Maximum Forward Biased Safe Operating Area (Note F) 10 ZJC Normalized Transient Thermal Resistance D=Ton/T TJ,PK=TC+PDM.ZJC.RJC RJC=7.5C/W
Pulse Width (s) Figure 10: Single Pulse Power Rating Junction-toCase (Note F)
In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
1
0.1
PD Ton Single Pulse
T
0.01 0.00001
0.0001
0.001
0.01
0.1
1
10
100
Pulse Width (s) Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)
Alpha & Omega Semiconductor, Ltd.
AOD608
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS: N-CHANNEL
40 ID(A), Peak Avalanche Current Power Dissipation (W) 35 30 25 20 15 10 5 0 0.000001 TA=150C TA=25C 20 15 10 5 0 0.0001 0.001 0 25 50 75 100 125 150 175 T CASE (C) Figure 13: Power De-rating (Note B) 25
tA =
L ID BV - V DD
0.00001
Time in avalanche, tA (s) Figure 12: Single Pulse Avalanche capability
current derating 12 Current rating ID(A) 10 Power (W) 8 6 4 2 0 0 25 50 75 100 125 150 175 T CASE (C) Figure 14: Current De-rating (Note B) 10 ZJA Normalized Transient Thermal Resistance D=Ton/T TJ,PK=TA+PDM.ZJA.RJA RJA=60C/W
50 40 30 20 10 0 0.001
TJ(Max)=150C TA=25C
0.01
0.1
1
10
100
1000
Pulse Width (s) Figure 15: Single Pulse Power Rating Junction-toAmbient (Note H)
In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
1
0.1 PD Single Pulse Ton 0.001 0.01 0.1 1 T 10 100 1000
0.01
0.001 0.00001
0.0001
Pulse Width (s) Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)
Alpha & Omega Semiconductor, Ltd.
AOD608
P-Channel Electrical Characteristics (T =25C unless otherwise noted) J Symbol Parameter Conditions ID=-250A, VGS=0V VDS=-32V, VGS=0V TJ=55C VDS=0V, VGS=20V VDS=VGS ID=-250A VGS=-10V, VDS=-5V VGS=-10V, ID=-10A RDS(ON) gFS VSD IS Static Drain-Source On-Resistance VGS=-4.5V, ID=-4A Forward Transconductance VDS=-5V, ID=-10A Diode Forward Voltage IS=-1A,VGS=0V Maximum Body-Diode Continuous Current TJ=125C -1.5 -30 42 59 62 13 -0.75 -1 3.5 1000 VGS=0V, VDS=-20V, f=1MHz VGS=0V, VDS=0V, f=1MHz 152 77 11 17.4 VGS=-10V, VDS=-20V, ID=-10A 8.8 3.3 4.5 9.7 VGS=-10V, VDS=-20V, RL=2, RGEN=3 6.3 35.5 26 22 15.9 75 51 -1.9 Min -40 -1 -5 150 -3 Typ Max Units V A A V A m m S V A pF pF pF nC nC nC nC ns ns ns ns ns nC
STATIC PARAMETERS BVDSS Drain-Source Breakdown Voltage IDSS IGSS VGS(th) ID(ON) Zero Gate Voltage Drain Current Gate-Body leakage current Gate Threshold Voltage On state drain current
DYNAMIC PARAMETERS Ciss Input Capacitance Coss Crss Rg Output Capacitance Reverse Transfer Capacitance Gate resistance
SWITCHING PARAMETERS Qg(10V) Total Gate Charge (10V) Qg(4.5V) Total Gate Charge (4.5V) Qgs Qgd tD(on) tr tD(off) tf trr Qrr Gate Source Charge Gate Drain Charge Turn-On DelayTime Turn-On Rise Time Turn-Off DelayTime Turn-Off Fall Time
IF=-10A, dI/dt=100A/s Body Diode Reverse Recovery Time Body Diode Reverse Recovery Charge IF=-10A, dI/dt=100A/s
A: The value of R JA is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with T A =25C. The Power dissipation P DSM is based on R JA and the maximum allowed junction temperature of 150C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175C may be used if the PCB allows it. B. The power dissipation P D is based on T J(MAX)=175C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C: Repetitive rating, pulse width limited by junction temperature T J(MAX)=175C. D. The R JA is the sum of the thermal impedence from junction to case R JC and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300 s pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T J(MAX)=175C. G. The maximum current rating is limited by bond-wires. H. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T A=25C. The SOA curve provides a single pulse rating. Rev0: Aug 2006
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
Alpha & Omega Semiconductor, Ltd.
AOD608
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS: P-CHANNEL
30 25 20 -ID (A) 15 10 5 0 0 1 2 3 4 5 -VDS (Volts) Fig 1: On-Region Characteristics 80 Normalized On-Resistance 70 RDS(ON) (m) 60 50 40 30 0 2 4 6 8 10 -ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage 100 90 80 70 60 25C 50 40 2 3 4 5 6 7 8 9 10 -VGS (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage ID=-10A 125C -IS (A) 1.0E+01 1.0E+00 1.0E-01 1.0E-02 1.0E-03 1.0E-04 1.0E-05 1.0E-06 0.0 0.2 0.4 0.6 0.8 1.0 -VSD (Volts) Figure 6: Body-Diode Characteristics 25C 125C VGS=-4.5V -ID(A) -4V -3.5V VGS=-3V -10V -6V -5V -4.5V 25 VDS=-5V 20 15 10 5 0 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 -VGS(Volts) Figure 2: Transfer Characteristics 1.8 1.6 1.4 1.2 1 0.8 0.6 -50 -25 0 25 50 75 100 125 150 175 Temperature (C) Figure 4: On-Resistance vs. Junction Temperature VGS=-4.5V ID=-4A VGS=-10V ID=-10A
125C 25C
VGS=-10V
Alpha & Omega Semiconductor, Ltd.
RDS(ON) (m)
AOD608
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS: P-CHANNEL
10 VDS=-40V ID=-10A Capacitance (pF) 1400 1200 1000 800 600 400 200 0 0 -Qg (nC) Figure 7: Gate-Charge Characteristics 4 8 12 16 20 0 5 15 20 25 30 35 -VDS (Volts) Figure 8: Capacitance Characteristics 10 40 Coss Crss Ciss
8
-VGS (Volts)
6
4
2
0
100
TJ(Max)=150C, TA=25C
200 160 Power (W) TJ(Max)=175C TA=25C
10 ID (Amps) RDS(ON) limited 1 DC
10s 100s 1ms 10ms 100m 1s 10s 1 10 100
120 80 40 0 0.0001
0.1 0.1 VDS (Volts) Figure 9: Maximum Forward Biased Safe Operating Area (Note E) 10 ZJC Normalized Transient Thermal Resistance D=Ton/T TJ,PK=TC+PDM.ZJC.RJC RJC=3C/W
0.001
0.01
0.1
1
10
Pulse Width (s) Figure 10: Single Pulse Power Rating Junction-toCase (Note F)
In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
1
0.1
PD Ton Single Pulse
T
0.01 0.00001
0.0001
0.001
0.01
0.1
1
10
100
Pulse Width (s) Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)
Alpha & Omega Semiconductor, Ltd.
AOD608
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS: P-CHANNEL
65 -ID(A), Peak Avalanche Current 55 45 35 25 15 5 0.000001 TA=150C 60
Power Dissipation (W)
tA =
L ID BV - VDD
50 40 30 20 10 0
TA=25C
0.00001
0.0001
0.001
0
25
50
75
100
125
150
175
Time in avalanche, tA (s) Figure 12: Single Pulse Avalanche capability
TCASE (C) Figure 13: Power De-rating (Note B)
14 12 Current ratingID(A) 10 8 6 4 2 0 0 25 50 75 100 125 150 175 TCASE (C) Figure 14: Current De-rating (Note B) 10 ZJA Normalized Transient Thermal Resistance Power (W)
60 50 40 30 20 10 0 0.001 TA=25C
0.01
0.1
1
10
100
1000
Pulse Width (s) Figure 15: Single Pulse Power Rating Junction-toAmbient (Note H)
1
D=Ton/T TJ,PK=TA+PDM.ZJA.RJA RJA=50C/W
In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
0.1 PD Single Pulse Ton T 100 1000
0.01
0.001 0.00001
0.0001
0.001
0.01
0.1
1
10
Pulse Width (s) Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)
Alpha & Omega Semiconductor, Ltd.


▲Up To Search▲   

 
Price & Availability of AOD608

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X